用F-G-H方法研究玻色-爱因斯坦凝聚体基态性质  被引量:2

Ground State of Bose-Einstein Condensation in F-G-H Method

在线阅读下载全文

作  者:吴大鹏[1] 门福殿[1] 刘慧[2] 

机构地区:[1]中国石油大学(华东)物理科学与技术学院,山东东营257061 [2]安徽科技学院理学院,安徽蚌埠233100

出  处:《计算物理》2009年第6期942-948,共7页Chinese Journal of Computational Physics

摘  要:用F-G-H方法数值求解描述BEC凝聚体的非线性薛定谔方程—Gross-Pitaevskii方程.研究总粒子数、粒子间相互作用、谐振频率和一般幂指数外势对玻色凝聚体粒子数密度分布、基态能量的影响.结果表明,增大幂指数外势、谐振频率,降低粒子间的排斥作用会增加凝聚体中心的粒子数密度、缩小凝聚体半径;增大总粒子数、谐振频率、粒子间的排斥作用和幂指数外势的指数会增大体系的基态能量;随着总粒子数增大,数值结果与托马斯-费米近似结果渐趋一致,托马斯-费米近似在大粒子数条件下是一种较好的近似方法,在粒子数有限时,结果与真实情形偏差较大,应采用数值解法.We study distribution of particles in Bose-Einstein condensation and ground state energy of condensate by solving a G-P equation with Fourier-Grid-Hamiltonian(F-G-H) method. It is shown that particle density in condensate center increases and radius of condensate decreases as intensity of power-law potential or frequency of harmonic potential is increased or repulsive interaction between particles is decreased. The ground state energy of BEC increases with increasing of total particle number, repulsive interaction between particles, frequency of harmonic potential or intensity of power-law potential. Thomas-Fermi approximation results approximate to numerical results as particle number increases. It is shown that Thomas-Fermi approximation is a good method with large particle numbers. For less particle numbers, numerical method should be used.

关 键 词:F-G-H方法 玻色-爱因斯坦凝聚 粒子数密度 基态能量 

分 类 号:O552.6[理学—热学与物质分子运动论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象