检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安科技大学计算机学院,陕西西安710054
出 处:《微电子学与计算机》2009年第12期128-131,共4页Microelectronics & Computer
摘 要:Bzier曲线(BC)在计算机辅助几何设计中有着广泛的应用.经典Bzier一个局限在于仅考虑了控制点CP的全局信息,因此BC和它的控制折线之间有很大的间距,导致形状表示中产生形状失真.文中提出一种改进的Bzier曲线细分和复合方法,该方法将原BC细分为两段,并将部分控制点向控制折线移动可变的距离,使细分后的Bzier曲线能够自由的靠近控制折线.由于合理选取新控制点列生成的函数,保证了新曲线具有CN-1连续性.在形状编码中只需要记录原Beizer控制点,再记录一个失真率μ,没有增加编码长度,因此该方法适合用于Bzier的形状表示.Bezier curves (BC) have been applied to a wide variety of computer- aided geometric design. A major limitation of the classical Bezier curve, is that only global information about its control points (CP) is considered, so there is a large gap between the curve and its control polygon, leading to distortion in shape representation. This paper presents a new method of subdivision and refinerment of Bezier Curves, which divide the origin BC into two segments, and move same of its CP towards the control polygon with a flexible parameter, therefore the divided curves can freely close to the control polygon. Because of choosing a appropriate dividing function, the new BC have C^N- 1 continuity. In the shape descriptor framework, Only the the origon CP and the rate-distortion is saved, without increasing: the number of CP. So this method can apply to the BC- based shape representation.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.235