检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国计量学院机电工程分院,杭州310018 [2]鹤岗矿务局,鹤岗154100 [3]黑龙江科技学院,哈尔滨150027
出 处:《重庆科技学院学报(自然科学版)》2009年第6期121-124,共4页Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基 金:黑龙江省教育厅科学技术研究项目(11533058)
摘 要:针对开关磁阻电机驱动系统具有非线性且结构参数变化范围较大的特点,提出了将混合遗传算法和神经网络相结合实现对开关磁阻电机驱动系统辨识的新方法。该方法结合混合遗传算法与神经网络各自的优点,克服了传统BP神经网络收敛速度较慢以及易于收敛到局部极小点等缺点。仿真试验表明,采用该方法能较迅速、准确地逼近实际系统,具有效性。Based on the characteristics of the nonlinear and the large range of structures and parameters of switched reluctance motor drive system, a new method that the combination of mixed genetic algorithms and neural network is put forward to achieve the identification of switched reluctance motor drive system. The principle is expounded and corresponding algorithm and formulas are presented as well. The method combines the advantages of the optimum genetic algorithms and neural networks which overcomes the shortcomings of traditional BP networks such as the slow learning rate and liable to converge to the local minima. The simulation results demonstrate that this method is quite practicable for its fast and exact closing to its real system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.105.194