检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张磊[1,2] 李和平[1] 徐丽萍[1] 王光伟[1,2] 张艳清[1,2] 窦静[1,2]
机构地区:[1]中国科学院地球化学研究所地球深部物质与流体作用地球化学实验室,贵州贵阳550002 [2]中国科学院研究生院,北京100039
出 处:《矿物学报》2009年第4期516-523,共8页Acta Mineralogica Sinica
基 金:科技部海洋863专题课题(2006AA09Z205);中国科学院大型设备研制项目(YZ200720);国家自然科学基金项目(批准号:40573046)
摘 要:高压水热体系在科学实验、工业过程和自然界中广泛存在。氧逸度/活度是高压水热体系最基本的物理化学参数之一,经常控制着体系的物质形态、性状以及过程的发生与发展,因此对高压水热体系氧逸度/活度的测量与控制具有极为重要的意义。本文首先对目前国际上流行的各种高压水热体系氧逸度/活度测量与控制技术从原理和基本特点等方面作了详细的介绍,接着对各种技术的优、缺点作了比较与评价,文末对未来高压水热科学与技术领域氧逸度/活度测量与控制技术的发展趋势作出了展望。High-pressure hydrothermal systems (HHSs) occur on many occasions, such as scientific experimenta- tions, and industrial and natural processes. Oxygen fugacity/activity is one of the basic physicochemical parameters of HHSs. It frequently controls the composition species, state and properties of HHSs, and influences the happening and evolution of many HHSs' processes. Therefore, oxygen fugacity measurement and control are critically important for HHSs. From the point of view of working principles and main features, various oxygen fugacity/activity sensors and control techniques popularly used in HHSs were first introduced in this study. Then the superiorities and weaknesses of various methods were commented. At the end, the prospects for the future development of oxygen fugacity/ activity sensors and control techniques in hydrothermal science and technology were presented.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42