基于斜拉索基频的斜拉桥损伤预警方法  

Damage alarming of cable-stayed bridge structures based on cable fundamental natural frequencies

在线阅读下载全文

作  者:孙宗光[1] 苏健[1] 伍雪南[1] 

机构地区:[1]大连海事大学交通与物流工程学院,辽宁大连116026

出  处:《大连海事大学学报》2009年第4期91-93,98,共4页Journal of Dalian Maritime University

基  金:辽宁省自然科学基金资助项目(20022004)

摘  要:为准确进行结构损伤预警,提出基于前馈BP网络实现新奇检测技术的斜拉桥损伤预警方法.以斜拉索局部振动模态的基频作为网络的基本输入,定义新奇指标为网络输出,根据训练阶段和检测阶段的新奇指标间的比较指示结构的健康状态.相比一般的损伤检测,其不依赖于数值模型,避免了对数值模型高精度的要求,提高了实用价值.对汲水门大桥14种损伤的模拟结果表明,在1%的噪声水平下,该方法可达到较好的预警率.A novelty detection technique was proposed based on feed-forward BP neural network for accurate alarm of structural damage in cable-stayed bridge. Natural frequencies of local vibration modes of stay cable were taken as the inputs of the network and a novelty index was defined by the outputs of the network. The structural state was indicated by comparing both the novelty index of training and testing phases. Comparing with general damage detection, the proposed technique only depends on non-structural model, which avoiding the high-precision demand and its utility value was improved. A total of 14 potential damage cases in a cable-stayed bridge were simulated, and resuits show that the proposed method is practicable for damage alarming under the noise of 1%.

关 键 词:斜拉桥 损伤预警 前馈BP网络 新奇检测 健康监测 

分 类 号:TU312[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象