Distribution patterns of chlorophyll a in spring and autumn in association with hydrological features in the southern Yellow Sea and northern East China Sea  被引量:4

Distribution patterns of chlorophyll a in spring and autumn in association with hydrological features in the southern Yellow Sea and northern East China Sea

在线阅读下载全文

作  者:张芳 李超伦 孙松 吴玉霖 任敬萍 

机构地区:[1]Institute of Oceanology,Chinese Academy of Sciences [2]Graduate School,Chinese Academy of Sciences

出  处:《Chinese Journal of Oceanology and Limnology》2009年第4期784-792,共9页中国海洋湖沼学报(英文版)

基  金:Supported by the National Natural Science Foundation of China (No.40606036);the National High Technology Research and Development Program (863 Program) (No.200lAA6360l0);the National Basic Research Program of China (973 Program) (No.2006CB400606)

摘  要:Two field studies were conducted to measure pigments in the Southern Yellow Sea (SYS) and the northern East China Sea (NECS) in April (spring) and September (autumn) to evaluate the distribution pattern of phytoplankton stock (Chl a concentration) and the impact of hydrological features such as water mass,mixing and tidal front on these patterns.The results indicated that the Chl a concentration was 2.43±2.64 (Mean ± SD) mg m-3 in April (range,0.35 to 17.02 mg m-3) and 1.75±3.10 mg m-3 in September (from 0.07 to 36.54 mg m-3) in 2003.Additionally,four areas with higher Chl a concentrations were observed in the surface water in April,while two were observed in September,and these areas were located within or near the point at which different water masses converged (temperature front area).The distribution pattern of Chl a was generally consistent between onshore and offshore stations at different depths in April and September.Specifically,higher Chl a concentrations were observed along the coastal line in September,which consisted of a mixing area and a tidal front area,although the distributional pattern of Chl a concentrations varied along transects in April.The maximum Chl a concentration at each station was observed in the surface and subsurface layer (0-10 m) for onshore stations and the thermocline layer (10-30 m) for offshore stations in September,while the greatest concentrations were generally observed in surface and subsurface water (0-10 m) in April.The formation of the Chl a distributional pattern in the SYS and NECS and its relationship with possible influencing factors is also discussed.Although physical forces had a close relationship with Chl a distribution,more data are required to clearly and comprehensively elucidate the spatial pattern dynamics of Chl a in the SYS and NECS.Two field studies were conducted to measure pigments in the Southern Yellow Sea (SYS) and the northern East China Sea (NECS) in April (spring) and September (autumn) to evaluate the distribution pattern of phytoplankton stock (Chl a concentration) and the impact of hydrological features such as water mass, mixing and tidal front on these patterns. The results indicated that the Chl a concentration was 2.43±2.64 (Mean ± SD) mg m-3 in April (range, 0.35 to 17.02 mg m3) and 1.75+3.10 mg m-3 in September (from 0.07 to 36.54 mg m3) in 2003. Additionally, four areas with higher Chl a concentrations were observed in the surface water in April, while two were observed in September, and these areas were located within or near the point at which different water masses converged (temperature front area). The distribution pattern of Chl a was generally consistent between onshore and offshore stations at different depths in April and September. Specifically, higher Chl a concentrations were observed along the coastal line in September, which consisted of a mixing area and a tidal front area, although the distributional pattern of Chl a concentrations varied along transects in April. The maximum Chl a concentration at each station was observed in the surface and subsurface layer (0-10 m) for onshore stations and the thermocline layer (10-30 m) for offshore stations in September, while the greatest concentrations were generally observed in surface and subsurface water (0-10 m) in April. The formation of the Chl a distributional pattern in the SYS and NECS and its relationship with possible influencing factors is also discussed. Although physical forces had a close relationship with Chl a distribution, more data are required to clearly and comprehensively elucidate the spatial pattern dynamics of Chl a in the SYS and NECS.

关 键 词:FRONT MIXING Yellow Sea Cold Bottom Water Chl a distribution pattern 

分 类 号:Q948[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象