Complex network analysis in inclined oil-water two-phase flow  被引量:2

Complex network analysis in inclined oil-water two-phase flow

在线阅读下载全文

作  者:高忠科 金宁德 

机构地区:[1]School of Electrical Engineering and Automation,Tianjin University

出  处:《Chinese Physics B》2009年第12期5249-5258,共10页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant Nos 50674070 and 60374041);the National High Technology Research and Development Program of China (Grant No 2007AA06Z231)

摘  要:Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil-water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil-water flow patterns. To investigate the dynamic characteristics of the inclined oil-water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil-water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil-water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice.Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil-water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil-water flow patterns. To investigate the dynamic characteristics of the inclined oil-water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil-water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil-water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice.

关 键 词:two-phase flow complex networks community structure nonlinear dynamics 

分 类 号:O359[理学—流体力学] O157.5[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象