Preparation and Characterization of High Purity Al_(2-x)Mg_(x+y)Ti_(1-y)O_(5-0.5x-y) Solid Solution  被引量:1

Preparation and Characterization of High Purity Al_(2-x)Mg_(x+y)Ti_(1-y)O_(5-0.5x-y) Solid Solution

在线阅读下载全文

作  者:陈捷 沈阳 阮玉忠 

机构地区:[1]College of Materials Science and Technology,Fuzhou University (New Campus) [2]Fujian Provincial Central Inspection Institute

出  处:《Chinese Journal of Structural Chemistry》2009年第12期1652-1656,共5页结构化学(英文)

基  金:supported by the Natural Science Foundation of Fujian Province (No. T08J0129);the Science and Technology Developing Foundation of Fuzhou University (No. 2008-XQ-001);2007-year New Century Talents Supporting Program of Fujian Province (No. XSJRC2007-17)

摘  要:A small amount of mineralizer MgO was added into Al2TiO5 synthesized from the sludge of aluminum factory to form Al(2-x)Mg(x+y)Ti(1-y)O(5-0.5x-y) solid solution and inhibit the decomposition of Al2TiO5 solid solution. It increased the content of Al2TiO5 solid solution and improved the thermal stability of materials. In this work,XRD and SEM methods were adopted to characterize the crystalline structure and microstructure of each kind of sample. Rietveld Quantification method was used to determine the content of crystalline phases in each sample. Results show as follows: the optimal addition concentration of MgO was 2.0%,and the corresponding content of Al2TiO5 solid solution which displayed irregular bulk shape was 100%; the addition of mineralizer MgO could enhance the flexural strength and thermal stability of Al2TiO5 solid solution materials. The optimal addition concentration of MgO determined by performance analysis was 2.0%,and its corresponding retention rate of thermal-shock flexural strength was 86.4%. Structure analysis and performance analysis resulted in good accordance.A small amount of mineralizer MgO was added into Al2TiO5 synthesized from the sludge of aluminum factory to form Al(2-x)Mg(x+y)Ti(1-y)O(5-0.5x-y) solid solution and inhibit the decomposition of Al2TiO5 solid solution. It increased the content of Al2TiO5 solid solution and improved the thermal stability of materials. In this work,XRD and SEM methods were adopted to characterize the crystalline structure and microstructure of each kind of sample. Rietveld Quantification method was used to determine the content of crystalline phases in each sample. Results show as follows: the optimal addition concentration of MgO was 2.0%,and the corresponding content of Al2TiO5 solid solution which displayed irregular bulk shape was 100%; the addition of mineralizer MgO could enhance the flexural strength and thermal stability of Al2TiO5 solid solution materials. The optimal addition concentration of MgO determined by performance analysis was 2.0%,and its corresponding retention rate of thermal-shock flexural strength was 86.4%. Structure analysis and performance analysis resulted in good accordance.

关 键 词:aluminum titanate solid solution MgO mineralizer water cooling method 

分 类 号:O611.4[理学—无机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象