Analysis of Plasma-Driven Tritium Permeation Through the First Wall of DFLL-TBM in ITER  

Analysis of Plasma-Driven Tritium Permeation Through the First Wall of DFLL-TBM in ITER

在线阅读下载全文

作  者:宋勇 黄群英 倪木一 

机构地区:[1]Institute of Plasma Physics,Chinese Academy of Sciences [2]School of Nuclear Science and Technology,University of Science and Technology of China

出  处:《Plasma Science and Technology》2009年第6期730-733,共4页等离子体科学和技术(英文版)

基  金:supported by National Natural Science Foundation of China(Nos.10675123,10775135 and 50871108);the Knowledge Innovation Program of Chinese Academy of Sciences

摘  要:Tritium permeation through the first wall (FW) from the plasma into helium coolant is evaluated for a dual-functional lithium-lead test blanket module (DFLL-TBM). The effect of the surface conditions on the plasma facing and coolant sides, both temperature gradient and beryllium layer clad on the plasma facing side, as well as trapping in defects on the tritium permeation is considered. The results show that most of the tritium implanted in FW re-entered the plasma. The plasma-driven tritium permeation is very sensitive to the surface conditions on the plasma facing side. With a higher sticking coefficient on the plasma-facing side, the tritium permeation into helium coolant is significantly reduced. The tritium permeation is strongly reduced with a beryllium layer clad on the front side of FW. The plasma driven tritium permeation will not seriously impact the tritium safety of DFLL-TBM. Based on tritium safety, it is reasonable to clothe the beryllium layer on FW and keep the surface clean to reduce the plasma driven tritium permeation.Tritium permeation through the first wall (FW) from the plasma into helium coolant is evaluated for a dual-functional lithium-lead test blanket module (DFLL-TBM). The effect of the surface conditions on the plasma facing and coolant sides, both temperature gradient and beryllium layer clad on the plasma facing side, as well as trapping in defects on the tritium permeation is considered. The results show that most of the tritium implanted in FW re-entered the plasma. The plasma-driven tritium permeation is very sensitive to the surface conditions on the plasma facing side. With a higher sticking coefficient on the plasma-facing side, the tritium permeation into helium coolant is significantly reduced. The tritium permeation is strongly reduced with a beryllium layer clad on the front side of FW. The plasma driven tritium permeation will not seriously impact the tritium safety of DFLL-TBM. Based on tritium safety, it is reasonable to clothe the beryllium layer on FW and keep the surface clean to reduce the plasma driven tritium permeation.

关 键 词:PLASMA tritium permeation first wall TBM 

分 类 号:TL64[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象