检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学机电工程学院,哈尔滨150001
出 处:《哈尔滨工业大学学报》2009年第11期53-58,共6页Journal of Harbin Institute of Technology
基 金:国家高技术研究发展计划项目(2008AA04Z401);哈尔滨电机厂生产计划系统开发项目
摘 要:针对确定缓冲时间困难的问题,提出了一种基于可用度理论的缓冲时间估算方法,将瓶颈前的每道工序都看成独立的单部件可修系统,根据故障率和维修率由马尔可夫过程方法得到该工序的持续时间估计,从而估计出必需的缓冲时间.分别给出了瓶颈前有单个工序、多个工序串联、并联或混联时的缓冲时间估算公式,还提出了一种改进模糊概率PERT方法,对得到的缓冲时间进行可信度计算.基于在制品存储费用和概率风险损失给出了缓冲时间的最优化模型.仿真试验的结果表明,该方法得到的缓冲时间合理、可信.Aimed at the difficulty in determining the size of buffer properly, an availability theory based buffer sizing approach is proposed, in which each activity before the bottleneck is considered as a single repairable system, then the availability function infered by Markov process is used to estimate the processing time of the activities, and the proper buffer size can be calculated. The time buffer estimation formulas for different situa- tions are given respectively, in which the activities are in series, parallel or serials-parallel before bottleneck Moreover, an improved fuzzy probability PERT method is proposed to evaluate the credibility of the buffer size obtained. Finally, an optimization model is built to determine the optimal buffer size, taking inventory cost and total risk delay penalty as performance indicators. The results of simulation test indicate that the buffer size calculated by the proposed method is reasonable and believable.
关 键 词:生产计划 缓冲时间 可用度理论 瓶颈 模糊概率PERT
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222