检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:楼佳[1] 唐延林[1] 蔡绍洪[1] 黄敬峰[2]
机构地区:[1]贵州大学理学院,贵阳550025 [2]浙江大学农业遥感与信息技术应用研究所,杭州310029
出 处:《中国农学通报》2009年第24期544-548,共5页Chinese Agricultural Science Bulletin
基 金:国家"863"项目"水稻氮素营养光谱诊断实用化关键技术研究"(2007AA10Z205);国家自然科学基金项目"生物聚合物混合光谱检测机理与方法研究"(10664001);贵州大学研究生创新基金项目资助"水稻氮素营养的光谱法检测研究"(2009032)
摘 要:采用小区试验研究了水稻叶片氮含量与透射光谱的相关性。用"秀水110"建立诊断模型,再用"协优9308"进行检测,分析一阶导数光谱与叶片氮含量的相关性。结果表明,一阶导数光谱与氮含量显著相关,相关系数可达R2=0.74。预测模型可达R2=0.84。与一阶导数光谱相比,还建立了3个植被指数:蓝波段透射光谱氮指数(BETNI)、黄波段透射光谱氮指数(YETNI)和红波段透射光谱氮指数(RETNI),并分别计算了它们在这三个波段的特殊波长的值。在这些特殊波长处,3个指标与氮含量的相关性明显比单叶片的透射光谱的相关性显著。YETNI610,YETNI630,YETNI643,YETNI652和RETNI能够很好地预测氮含量;对于"协优9308"的预测结果显示YETNI570,YETNI592和RETNI为最好的模型。分析结果显示,透射光谱的氮指标(YETNI570,YETCI592,RETNI)能够最好地预测氮含量。In this study, we used 'Xiushui 110' to create the diagnostic models, and then used "Xieyou 9308" to test. The results indicate that the first derivative spectra are significantly correlated to nitrogen content. The highest squared multiple correlation coefficients R^2=0.74. In the best predicting model of nitrogen content, R^2= 0.84. Comparing with the first derivative transmittance spectra, we build three indices, including blue edge transmittance spectra nitrogen index (BETNI), yellow edge transmittance spectra nitrogen index (YETNI) and red edge transmittance spectra nitrogen index (RETNI), calculated from three edge specific wavebands respectively. The significant correlations (P〈0.01) between the nitrogen content and these indices are more obvious than that between the nitrogen content and single leaf transmittance spectra of specific wavebands. YETNI610, YETNI630, YETNI643, YETNI652, and RETNI are better predictors for nitrogen content than others. From this preliminary analysis, it is observed that the transmittance spectra nitrogen indices YETNI570, YETNI592, and RETNI are the best predictors to estimated nitrogen content.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15