检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院国家天文台,北京100012 [2]北京服装学院基础部,北京100029
出 处:《光谱学与光谱分析》2009年第12期3424-3428,共5页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(10603001);北京市属市管高等学校人才强教计划项目PHR(IHLB)资助
摘 要:恒星光谱数据的自动识别与分类是现代巡天望远镜所产生的海量光谱数据处理的一项重要研究内容。针对流量未定标的低分辨率恒星光谱设计了一种有效的自动分类方案,实现恒星光谱的MK分类:光谱型及其次型分类,光度型分类。该方案由三部分实现:(1)连续谱归一化:基于小波技术提取低频信号逼近连续谱的方法;(2)七种光谱型及其次型的分类通过非参数回归方法实现。(3)光度型分类通过基于最近邻的χ2方法实现。实验结果表明该方案能够有效实现恒星光谱的MK分类,光谱型及其次型的分类精度为3.2个光谱次型,Ⅰ-Ⅴ光度型的正确识别率为60%,次优统计率为78%。该方案训练速度快,方法实现容易,适用于海量恒星光谱自动分类处理系统。The automated classification and recognition of stellar spectra is an important research for the spectra processing system of modern telescope survey project.For the spectra without flux calibration,the authors present an automated stellar spectra classification system to achieve two goals:one is the spectral class and spectral subclass classification,and the other is luminosity type recognition.The system is composed of three units:(1)continuum normalization method based on wavelet technique;(2)non-parameter regression method for spectral class and spectral subclass classification;(3)χ2 method based on nearest neighbor for luminosity type determination.The experiments on low-resolution spectra show that the system achieves 3.2 spectral subclass precision for spectral and spectral subclass classification,60% correct rate for luminosity recognition,and 78% rate for the luminosity recognition with error less than or equal to 1.The system is easy,rapid in training,and feasible for the automated spectra classification.
关 键 词:恒星光谱分类 连续谱归一化 非参数回归 最近邻方法 光度
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15