检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《软件导刊》2009年第12期38-41,共4页Software Guide
基 金:安徽省优秀青年人才基金(2009Sqrz054)
摘 要:对于含复杂约束条件的多目标优化问题,提出了一种基于群体分类的遗传算法。其分类方法是:首先将种群分为不可行群体和可行群体,又将可行群体分为可行非Pareto群体和可行Pareto群体,然后再用k-均值聚类将可行Pareto群体划分为非聚类Pareto群体和聚类Pareto群体,最后对上述4个群体分别赋以适当的R适应值。数值计算表明,这种新的算法不仅能得到分布广泛、均匀的Pareto最优解,而且进化速度很快。The paper presents a constraint-handling approach for muhiobjective optimization.The general idea is shown as follow:Firstly, the population was classified into two groups :feasible population and infeasible population.Secondly, feasible population was classified into Pareto population and un-Pareto population. Thirdly, the Pareto population was defied with k-average classify approach into colony Pareto population and in-colony Pareto population.lastly,R-fitness was given to each population.Simulation results show that the algorithm not only improves the rate of convergence but also can find feasible Pareto solutions distribute abroad and even.
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7