检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Volker Elling
机构地区:[1]Department of Mathematics, University of Michigan, MI4810-1043, USA
出 处:《Acta Mathematica Scientia》2009年第6期1647-1656,共10页数学物理学报(B辑英文版)
摘 要:Numerical approximations of multi-dimensional shock waves sometimes ex- hibit an instability called the carbuncle phenomenon. Techniques for suppressing carbuncles are trial-and-error and lack in reliability and generality, partly because theoretical knowledge about carbuncles is equally unsatisfactory. It is not known which numerical schemes are affected in which circumstances, what causes carbuncles to appear and whether carbuncles are purely mimerical artifacts or rather features of a continuum equation or model. This article presents evidence towards the latter: we propose that carbuncles are a special class of entropy solutions which can be physically correct in some circumstances. Using "filaments", we trigger a single carbuncle in a new and more reliable way, and compute the structure in detail in similarity coordinates. We argue that carbuncles can, in some circumstances, be valid vanishing viscosity limits. Trying to suppress them is making a physical assumption that may be false.Numerical approximations of multi-dimensional shock waves sometimes ex- hibit an instability called the carbuncle phenomenon. Techniques for suppressing carbuncles are trial-and-error and lack in reliability and generality, partly because theoretical knowledge about carbuncles is equally unsatisfactory. It is not known which numerical schemes are affected in which circumstances, what causes carbuncles to appear and whether carbuncles are purely mimerical artifacts or rather features of a continuum equation or model. This article presents evidence towards the latter: we propose that carbuncles are a special class of entropy solutions which can be physically correct in some circumstances. Using "filaments", we trigger a single carbuncle in a new and more reliable way, and compute the structure in detail in similarity coordinates. We argue that carbuncles can, in some circumstances, be valid vanishing viscosity limits. Trying to suppress them is making a physical assumption that may be false.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49