Criterion of aerodynamic performance of large-scale offshore horizontal axis wind turbines  

Criterion of aerodynamic performance of large-scale offshore horizontal axis wind turbines

在线阅读下载全文

作  者:程兆雪 李仁年 杨从新 胡文瑞 

机构地区:[1]Lanzhou University of Technology [2]Institute of Mechanics,Chinese Academy of Sciences

出  处:《Applied Mathematics and Mechanics(English Edition)》2010年第1期13-20,共8页应用数学和力学(英文版)

基  金:supported by the National Basic Research Program of China (973 Program) (No. 2007CB714605)

摘  要:With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.

关 键 词:offshore wind energy project horizontal axis wind turbine rotor aerody-namic design annual usable energy pattern factor power coefficient wind turbine rotor wind turbine blade 

分 类 号:TK83[动力工程及工程热物理—流体机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象