检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Aerospace,Tsinghua University
出 处:《Applied Mathematics and Mechanics(English Edition)》2010年第1期97-108,共12页应用数学和力学(英文版)
基 金:supported by the National Natural Science Foundation of China (No. 10772098)
摘 要:A numerical scheme is developed to extend the scope of the spectral method without solving the covariant and contravariant forms of the Navier-Stokes equations in the curvilinear coordinates. The primitive variables are represented by the Fourier series and the Chebyshev polynomials in the computational space. The time advancement is accomplished by a high-order time-splitting method, and a corresponding high-order pressure condition at the wall is introduced to reduce the splitting error. Compared with the previous pseudo-spectral scheme, in which the Navier-Stokes equations are solved in the covariant and contravariant forms, the present scheme reduces the computational cost and, at the same time, keeps the spectral accuracy. The scheme is tested in the simulations of the turbulent flow in a channel with a static streamwise wavy wall and the turbulent flow over a flexible wall undergoing the streamwise traveling wave motion. The turbulent flow over an oscillating dimple is studied with the present numerical scheme, and the periodic generation of the vortical structures is analyzed.A numerical scheme is developed to extend the scope of the spectral method without solving the covariant and contravariant forms of the Navier-Stokes equations in the curvilinear coordinates. The primitive variables are represented by the Fourier series and the Chebyshev polynomials in the computational space. The time advancement is accomplished by a high-order time-splitting method, and a corresponding high-order pressure condition at the wall is introduced to reduce the splitting error. Compared with the previous pseudo-spectral scheme, in which the Navier-Stokes equations are solved in the covariant and contravariant forms, the present scheme reduces the computational cost and, at the same time, keeps the spectral accuracy. The scheme is tested in the simulations of the turbulent flow in a channel with a static streamwise wavy wall and the turbulent flow over a flexible wall undergoing the streamwise traveling wave motion. The turbulent flow over an oscillating dimple is studied with the present numerical scheme, and the periodic generation of the vortical structures is analyzed.
关 键 词:spectral method time-dependent wall geometry turbulent flow
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222