检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京科技大学经济管理学院,北京100083 [2]北京科技大学中国教育经济信息网管理中心,北京100083 [3]钢铁研究总院,北京100081
出 处:《计算机工程》2010年第1期25-26,29,共3页Computer Engineering
基 金:国家自然科学基金资助项目(70771007);2005年度新世纪优秀人才支持计划基金资助项目(NECT-05-0097)
摘 要:针对复杂网络社团结构挖掘算法复杂度高的问题,提出一种基于最大节点接近度的局部社团结构挖掘算法。该算法的时间复杂度为O(kd)。为验证该方法计算的准确性和计算的速度,与一种经典的挖掘局部社团结构方法——Clauset算法进行比较。实验结果表明,该算法抽取的社团结构与Clauset算法相比基本一致,但在性能上有明显提高。This paper presents an algorithm for detecting local community structure based on maximal closeness degree of vertex for resolving the time complexity problems of finding local community structure in complex networks. The algorithm runs in time O(kd) for general graphs. In order to determine the precision and speed of the method, it is compared with the classical local community identification approaches, namely Clauset algorithm. Experimental results shows that the algorithm is as effective as Clauset algorithm on the whole, and the algorithm is much faster than Clauset algorithm.
分 类 号:TP313[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147