检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨荣华[1,2,3] 花向红[1,2] 李昭[1,2] 吴继忠[1,2]
机构地区:[1]武汉大学测绘学院,武汉市珞喻路129号430079 [2]武汉大学灾害监测与防治研究中心,武汉市珞喻路129号430079 [3]闽江学院地理科学系,福州市大学城文贤路1号350108
出 处:《武汉大学学报(信息科学版)》2010年第1期21-24,共4页Geomatics and Information Science of Wuhan University
基 金:云南省省院省校科技合作资助项目(2006YX36);福建省自然科学基金资助项目(2008J0245);福建省省教育厅科技资助项目(JB08203)
摘 要:针对LLL(Lenstra,Lenstra,Lovasz algorithm)算法的不足,提出了具有自适应性的整数正交变换算法,并采用此算法和升序排序调整矩阵对LLL算法进行了改进。通过LLL算法和改进的LLL算法对随机模拟的600个对称正定矩阵的模糊度方差-协方差阵和30组实测数据进行处理分析,发现改进的LLL算法能够更有效地降低协方差阵的条件数,减小备选模糊度组合数,更有利于整周模糊度的搜索和解算。According to the deficiency of the LLL algorithm(A. K. Lenstra, H. W. Lenstra, L. Lovasz algorithm), the adaptive integer orthogonal transformation algorithm is proposed in the paper. It can be used to improve the LLL algorithm with sort ascending matrix. Based on the condition number, comparison has been made between the LLL algorithm and the improved LLL method by using 600 symmetric and positive definite matrixes derived from random simulation, and as 30 sets of actual measuring data. Numerical results show that the improved LLL algorithm has better performance in decreasing matrix condition number and the number of candidate integer ambiguity. Thus it could decrease the searching time of the right integer ambiguity resolution.
分 类 号:P228.41[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.166.64