蕴含K_4+P_2-可图序列的刻划(英文)  被引量:1

A Characterization On Potentially K_4+P_2-graphic Sequences

在线阅读下载全文

作  者:王艳[1] 黄伟兰[1] 

机构地区:[1]漳州师范学院数学与信息科学系,福建漳州363000

出  处:《数学研究》2009年第4期375-382,共8页Journal of Mathematical Study

基  金:supported by NSFF(2008J0209);the Scientific Research Foundation of Zhangzhou Normal University(SK09016)

摘  要:对于给定的图H,若存在可图序列π的一个实现包含H作为子图,则称π为蕴含H-可图的.Gould等人考虑了下述极值问题的变形:确定最小的偶整数σ(H,n),使得每个满足σ(π)≥σ(H,n)的n项可图序列π=(d_1,d_2,…,d_n)是蕴含H-可图的,其中σ(π)=∑d_i.本文刻划了蕴含K_4+P_2-可图序列,其中K_4+P_2是向K4的一个顶点添加两条悬挂边后构成的简单图.这一刻划导出σ(K_4+P_2,n)的值.For a given graph H, a graphic sequence π is potentially H-graphic if there is a realization of π containing H as a subgraph. Gould et al. considered an extremal problem on potentially H-graphic sequences as follows: determine the smallest even integer a(H, n) such that every n-term positive graphic sequence π= (d1, d2,…, dn) with σ(π)≥σ(7(H, n) has a realization G containing H as a subgraph, where σ(π) =Σdi. In this paper, we characterize the potentially K4 + P2-graphic sequences, where K4 + P2 is a graph obtained by adding two pendent edges to a vertex on K4. The characterization implies the value of o(K4 + P2, n).

关 键 词: 度序列 蕴含K4+P2-可图序列 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象