渐近解求解静电成像电子光学近轴横向像差的验证  

Test and Verification of Paraxial Lateral Aberrations of Imaging Electrostatic Electron Optics Based on the Asymptotic Solutions

在线阅读下载全文

作  者:周立伟[1] 公慧[1] 

机构地区:[1]北京理工大学光电学院,北京100081

出  处:《北京理工大学学报》2009年第12期1035-1040,1057,共7页Transactions of Beijing Institute of Technology

基  金:国家自然科学基金资助项目(60771070);高等学校博士点专项科研基金资助课题(B-117)

摘  要:通过一两电极静电同心球系统的理想模型的解析解,对以渐近解表示的近轴横向像差进行了验证。推导了两电极静电同心球系统的理想模型的渐近解各系数的表达式,以证明基于渐近解求解电子光学近轴横向像差的途径的可行性和正确性。由渐近解导出的静电电子光学成像系统的二级和三级近轴色差表达式,证明了莱克纳格尔-阿尔齐莫维奇(Recknagel-Artimovich)公式依然成立。给出了以简明形式表示的近轴横向像差的表达式,对于成像电子光学的像差理论和像管设计具有理论和实际意义。In the present paper,the paraxial lateral aberrations,in which the aberration coefficients are solved by asymptotic solutions of paraxial equation,have been verified and tested by a two-electrode electrostatic spherical concentric system model.The two special solutions expressed by asymptotic solutions and accurate solutions in a two-electrode electrostatic spherical concentric system model have been deduced.Result completely proves that the approach based on asymptotic solutions to solve the paraxial lateral aberrations are correct and practicable.The whole expression of paraxial chromatic aberration for imaging electron optics has been deduced,in which the paraxial chromatic aberration of magnification and the paraxial chromatic aberration of third order have been firstly given.The Recknagel-Artimovich formula of paraxial chromatic aberration of second order has been deduced and confirmed which possess an greatest part in the whole paraxial lateral aberrations.A simple and clear form for expressing paraxial lateral aberrations of imaging electron optics is suggested for practical use.Results of the present paper will have theoretical and practical significance for the design of image tubes.

关 键 词:成像电子光学系统 静电阴极透镜 像差理论 近轴横向像差 近轴色差 近轴放大率色差 

分 类 号:O463.1[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象