检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中山大学电子系,广州510275
出 处:《系统仿真学报》2010年第1期29-32,共4页Journal of System Simulation
基 金:国家自然科学基金(60575006)
摘 要:构造了一种能准确描述文本之间相似性(亲和力)的新方法,并在此基础上提出了一种改进的人工免疫文本聚类算法。仿真结果表明,与传统的文本聚类算法相比,新算法不仅能自动发现新类,而且具有聚类精度更高、数据压缩比更大、与输入初始配置无关、可增量处理的优势。A new method which could accurately compute the affinity between documents was proposed. By using the method, a document clustering algorithm based on improved artificial immune system was proposed. Simulation results show that new algorithm can not only locate new clusters automatically, but has the advantage of being independent of the input initialization and the incremental clustering ability as well, where it has better clustering quality and higher data compression rate rather than some current document clustering algorithms.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15