检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics and Mechanics,University of Science and Technology Beijing
出 处:《Chinese Physics B》2010年第1期156-159,共4页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China (Grant No. 60674059);Research Fund of University of Science and Technology Beijing, China (Grant No. 00009010)
摘 要:A chaotic system is bounded, and its trajectory is confined to a certain region which is called the chaotic attractor. No matter how unstable the interior of the system is, the trajectory never exceeds the chaotic attractor. In the present paper, the sphere bound of the generalized Lorenz system is given, based on the Lyapunov function and the Lagrange multiplier method. Furthermore, we show the actual parameters and perform numerical simulations.A chaotic system is bounded, and its trajectory is confined to a certain region which is called the chaotic attractor. No matter how unstable the interior of the system is, the trajectory never exceeds the chaotic attractor. In the present paper, the sphere bound of the generalized Lorenz system is given, based on the Lyapunov function and the Lagrange multiplier method. Furthermore, we show the actual parameters and perform numerical simulations.
关 键 词:CHAOS generalized Lorenz system Lyapunov function Lagrange multiplier method
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249