机构地区:[1]School of Environmental & Safety Engineering, Jiangsu Polytechnic University, Changzhou 213164 (China) [2]Changzhou Agricultural and Forestry Bureau, Changzhou 213001 (China)
出 处:《Pedosphere》2010年第1期96-103,共8页土壤圈(英文版)
基 金:Project supported by the Postgraduate Research and Innovation Project of the Universities in Jiangsu Province, China(No. CX08S 018Z);the Jiangsu Provincial Natural Science Foundation of China (No. BK2008144);the Key Projectfor Agricultural Science and Technology of Changzhou, Jiangsu Province, China (No. CE2008211)
摘 要:An experiment was carried out to investigate the variations in metal uptake and translocation among 19 wetland plant species in small-scale plots of constructed wetland using artificial wastewater containing 2.0 mg L^-1 copper (Cu), 1.0 mg L^-1 chromium (Cr), and 2.0 mg L^-1 nickel (Ni). More than 97% of Cu, Cr, and Ni were removed from the wastewater by the wetland plant species. There were more than ]00-fold differences in the metal accumulation and more than ten-fold differences in the metal concentrations among the 19 plant species. These plants accumulated as high as 8.8% of Cu, 20.5% of Cr, and 14.4% of Ni when they were grown in the wetland soaked with the wastewater. Several plant species were found to be highly capable of accumulating one, two or all the three metals. The results indicated considerable variations in the metal removal abilities through phytoextraction among the 19 wetland plant species. It can be concluded that the selection of appropriate plant species in constructed wetland can be crucial for the improvement of metal removal efficiency of the wetland system.An experiment was carried out to investigate the variations in metal uptake and translocation among 19 wetland plant species in small-scale plots of constructed wetland using artificial wastewater containing 2.0 mg L-1 copper (Cu), 1.0 mg L-1 chromium (Cr), and 2.0 mg L-1 nickel (Ni). More than 97% of Cu, Cr, and Ni were removed from the wastewater by the wetland plant species. There were more than 100-fold differences in the metal accumulation and more than ten-fold differences in the metal concentrations among the 19 plant species. These plants accumulated as high as 8.8% of Cu, 20.5% of Cr, and 14.4% of Ni when they were grown in the wetland soaked with the wastewater. Several plant species were found to be highly capable of accumulating one, two or all the three metals. The results indicated considerable variations in the metal removal abilities through phytoextraction among the 19 wetland plant species. It can be concluded that the selection of appropriate plant species in constructed wetland can be crucial for the improvement of metal removal efficiency of the wetland system.
关 键 词:constructed wetland heavy metal PHYTOEXTRACTION wastewater treatment
分 类 号:X703[环境科学与工程—环境工程] Q948.524.5[生物学—植物学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...