检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业职业技术学院计算机系,浙江绍兴312000 [2]绍兴文理学院计算机系,浙江绍兴312000
出 处:《北京电子科技学院学报》2009年第4期55-61,共7页Journal of Beijing Electronic Science And Technology Institute
摘 要:微粒群算法是相对较新颖的优化算法,已成功应用于许多优化问题,但该算法容易陷入局部极值。惯性权值的选择方案的好坏,起到举足轻重的作用,本文提出三种惯性权值的改进方案。通过对4种常用测试函数进行测试,结果表明这些改进方案比经典惯性权值选择方案具有更低的平均最好适应值,快速收敛到全局最优解,优化效率明显提高。PSO algorithm is a relatively new optimization algorithm and has been successfully used in many optimization problems,but the algorithm is vulnerable to local extreme.The paper proposed three improvement ways based on the selection of inertia weight scheme.The test results proved the improvement ways shows that the average of the best fitness of the algorithm is lower than classic inertia weight.The ways can rapidly converge to the global optimal solution;the optimization efficiency is increased significantly.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

