机构地区:[1]Institute of Applied Ecology, Chinese Academy ofSeiences, Shenyang 110016, China [2]Graduate University of the Chinese Academy of Sciences, Beijing 100049, China [3]Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China [4]College of Life & Environment Sciences, Shanghai Normal University, Shanghai 200234, China
出 处:《Journal of Systematics and Evolution》2010年第1期36-46,共11页植物分类学报(英文版)
基 金:supported by the Research Fund for the Large-scale Scientific Facilities of the Chinese Academy of Sciences (Grant No. 2009-LSF-GBOWS-01);the Natural Science Foundation of China (Grant No. 30770141);the Shanghai Leading Academic Discipline Project (Grant No. S30406)
摘 要:DNA barcoding is a molecular tool that uses a standardized DNA region to identify species. Our preliminary study reported here is the first attempt to specifically focus on universality and attributes of candidate barcodes across a wide systematic range of mosses. We tested eight previously proposed plant barcoding regions (atpF-atpH, ITS2, matK, psbK-psbI, rbcL, rpoB, rpoC1, and trnH-psbA) and two popular phylogenetic markers (rps4 and trnL-trnF of cpDNA) in 49 moss species and 9 liverwort species, representing half of the orders in moss lineages. The ITS2, rbcL, rpoC1, rps4, trnH-psbA and trnL-trnF regions showed good universality, and therefore the efficacy of these loci as DNA barcodes was further evaluated in 36 mosses and 2 liverworts, each of which included two to three individuals per taxa. The five loci, viz. rbcL, rpoC1, rps4, trnH-psbA and trnL-trnF, were easy to amplify and sequence and showed significant inter-specific genetic variability, making them potentially useful DNA barcodes for mosses. The best performing single loci were the rbcL and rpoC1 coding regions. Several loci showed equivalent performance and combinations of them did not greatly increase their discrimination capacity. In addition, phylogenies generated from each of the separate regions and multi-locus combinations by using best-fit and Kimura 2-parameter models were compared, but no significant difference was found.DNA barcoding is a molecular tool that uses a standardized DNA region to identify species. Our preliminary study reported here is the first attempt to specifically focus on universality and attributes of candidate barcodes across a wide systematic range of mosses. We tested eight previously proposed plant barcoding regions (atpF-atpH, ITS2, matK, psbK-psbI, rbcL, rpoB, rpoC1, and trnH-psbA) and two popular phylogenetic markers (rps4 and trnL-trnF of cpDNA) in 49 moss species and 9 liverwort species, representing half of the orders in moss lineages. The ITS2, rbcL, rpoC1, rps4, trnH-psbA and trnL-trnF regions showed good universality, and therefore the efficacy of these loci as DNA barcodes was further evaluated in 36 mosses and 2 liverworts, each of which included two to three individuals per taxa. The five loci, viz. rbcL, rpoC1, rps4, trnH-psbA and trnL-trnF, were easy to amplify and sequence and showed significant inter-specific genetic variability, making them potentially useful DNA barcodes for mosses. The best performing single loci were the rbcL and rpoC1 coding regions. Several loci showed equivalent performance and combinations of them did not greatly increase their discrimination capacity. In addition, phylogenies generated from each of the separate regions and multi-locus combinations by using best-fit and Kimura 2-parameter models were compared, but no significant difference was found.
关 键 词:BRYOPHYTA DNA barcoding rbcL rpoC1 rps4 TRNH-PSBA TRNL-TRNF
分 类 号:Q949.352[生物学—植物学] TP391.44[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...