积分波动率二阶变差估计量分析:鞍点算法  被引量:1

Analysis of Variational Estimator for Integrated Volatility:Saddlepoint Algorithm

在线阅读下载全文

作  者:陆群花[1] 

机构地区:[1]五邑大学数理系,广东江门529020

出  处:《数理统计与管理》2010年第1期62-67,共6页Journal of Applied Statistics and Management

摘  要:本文利用鞍点逼近方法对Black-Scholes模型的积分波动率的二阶变差估计量的估计误差进行分析,得到了相对于中心极限定理更为精细的结果,并且给出了逼近的鞍点算法。结果表明鞍点逼近是中心极限定理的纠正。模拟结果表明鞍点算法给出的估计误差分布相对于正态逼近更合理。该结果在对积分波动率进行统计假设检验时是有意义的。This paper analyzes the estimation error of the variational estimator for integrated volatility of the Black-Scholes model by using saddlepoint approximation method. A much more accurate result compared with central limit theorem is established, and the saddlepoint algorithm is presented. It turns out that saddlepoint approximation is a correction of normal approximation. Simulation provides evidence of more rationality of the estimation error distribution calculated by saddlepoint algorithm. This is of significance in statistical test for integrated volatility.

关 键 词:鞍点逼近 积分波动率 二阶变差估计 

分 类 号:O213.9[理学—概率论与数理统计] F064.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象