液相色谱-质谱法比较分析正常人与胃癌患者的胃组织蛋白质  

Comparison of extracted proteins of human stomach tumor and normal tissues with liquid chromatography-multistage mass spectrometry

在线阅读下载全文

作  者:罗福文[1,2] 陶定银[3] 赵鹏[2] 张凌怡[4] 贾玉杰[2] 张维冰[4] 

机构地区:[1]大连医科大学病理生理教研室,辽宁大连116027 [2]大连医科大学附属第二医院普通外科,辽宁大连116027 [3]中国科学院大连化学物理研究所,中国科学院分离分析化学重点实验室,国家色谱分析研究中心,辽宁大连116023 [4]华东理工大学化学与分子工程学院,上海200237

出  处:《色谱》2010年第1期34-37,共4页Chinese Journal of Chromatography

基  金:国家自然科学基金重点基金项目(No.20435020);国家自然科学基金面上基金项目(No.20675083)

摘  要:通过蛋白质组学技术筛选胃癌相关标志物是目前胃癌研究的热点,也是早期诊断的关键。针对组织蛋白质提取物非常复杂的特点,并根据疏水性的差异,采用反相液相色谱对正常及癌症组织提取蛋白质进行分离。通过比较正常及癌症组织提取蛋白质的谱图差异,收集并酶解差异最大的保留时间为45~47min的馏分,采用液相色谱-多级质谱联用(LC-MS/MS)鉴定其酶解产物。鉴定结果显示,正常及癌症组织中的共有蛋白质为9个,正常组织中有6个特异蛋白质,而癌症组织中有17个特异蛋白质。通过进一步分析,筛选出胃癌组织中含有的丰度较高的两个蛋白质。应用生物信息学方法分析这些蛋白质,能为将来的药物靶点、药物作用通路研究提供更多的信息。Screening of tumor markers by proteomic technology is the research focus and key of early diagnosis of stomach cancer study. Aiming at the complexity of the extracted proteins from biological tissue, reversed-phase high performance liquid chromatography (RP-HPLC) was employed as one of the most efficient chromatographic methods. Based on the difference of hydrophobicity, RP-HPLC separation was performed to reduce the complexity of stomach cancer tissue and normal tissue samples, separately. By comparing the chromatograms, different components were collected. The fractions with the retention times from 45 min to 47 min were digested and identified by liquid chromatography-multistage mass spectrometry (LC-MS/MS). Nine common proteins were found in both tumor tissue and normal tissue. Six specific proteins were screened in normal tissue and seventeen specific proteins were found in tumor tissue under the same conditions. Two proteins with higher abundance in tumor tissue were selected for further investigation. These proteins provide more information for future drug target and drug pathway research by the analysis of biological information.

关 键 词:液相色谱-多级质谱法 特异蛋白质 癌症 胃组织 

分 类 号:O658[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象