检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西大学工程防灾与结构安全教育部重点实验室,广西南宁530004 [2]广西大学土木建筑工程学院,广西南宁530004
出 处:《广西大学学报(自然科学版)》2010年第1期24-29,共6页Journal of Guangxi University(Natural Science Edition)
基 金:国家自然科学基金资助项目(50768001);广西自然科学基金重点项目(桂科自0991020Z)
摘 要:为了研究开口薄壁杆件的塑性极限承载力,采用空间杆件广义屈服准则定义单元承载比、结构的承载比均匀度及基准承载比的概念和计算表达式,据此建立了弹性模量调整的计算公式,进而提出了薄壁杆件结构的极限承载力分析的弹性模量缩减法。算例结果表明,弹性模量缩减法具有良好的计算精度和计算效率。算例分析表明,工字形薄壁杆受偏心荷载作用时,对结构破坏影响最大的内力是弯矩,其次是扭矩;工字型薄壁杆的极限承载力随翼板厚度或腹板厚度的增加而提高,且对前者的变化更敏感。The elastic modulus reduction method (EMRM) is proposed for the plastic ultimate load bearing capacity evaluation of thin-walled beams, based on the element bearing ratio (EBR) and the equilibrium of strain energy. The EBR is defined for discrete elements by the generalized yield criteria of space bar. The concept and expression of uniformity of EBR and the reference of EBR are presented for adjustment of the elastic modulus of elements. The numerical examples presented in this paper demonstrate the flexibility, accuracy and efficiency of the proposed method. It also shows that the ultimate bearing capacity of the thin-walled bar increase with the thickness of flange or web, and is more sensitive to the variation of the thickness of the flange than the web.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229