检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学混凝土及预应力混凝土结构教育部重点实验室,南京210096 [2]东南大学江苏省预应力工程技术研究中心,南京210096
出 处:《东南大学学报(自然科学版)》2010年第1期190-195,共6页Journal of Southeast University:Natural Science Edition
基 金:国家自然科学基金资助项目(50478075)
摘 要:对固接抛物线浅拱的静力及动力稳定性问题进行了研究.基于哈密尔顿原理推导出抛物线浅拱的动力学控制方程,并推得非线性静力平衡方程及静力跃越和分岔屈曲的解析方程;利用体系不稳定平衡时的能量守恒原理确立了发生动力屈曲的临界条件并得到动力屈曲相对荷载上限及下限值.分析结果表明:浅拱的修正长细比及结构已存在荷载是影响浅拱屈曲的重要参数,阶跃荷载作用下浅拱的静力及动力屈曲相对荷载随着长细比的增加而增加,而动力屈曲荷载随结构已存在荷载的增大而减小;当稳定平衡时系统势能大于零,浅拱的动力屈曲荷载将显著提高.In-plane static and dynamic buckling of fixed parabolic arches is concerned. The equa- tions of motion are derived from Hamilton's principle, and the nonlinear equilibrium equations and static buckling equilibrium equations are deduced for shallow parabolic arches. The law of conserva- tion of energy is used along the unstable equilibrium paths to establish the criterion for dynamic buck- ling of shallow arches, and analytical solutions for the lower and upper dimensionless dynamic buck- ling loads of arches under the step load are obtained. It is found that modified slenderness ratio and the pre-applied static load are important parameters affecting the buckling of shallow arches, and that the static and dimensionless dynamic buckling loads increase with an increase of modified slenderness ratio. It is also shown that dynamic buckling loads are reduced by raising pre-applied static loads. The dynamic buckling loads will be significantly improved when the system potential energy along the stable equilibrium path are positive.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.21.218