一种适于主-从模式网络计算的事件驱动架构  被引量:6

An Event Driven Architecture for Master-Worker Network Computing

在线阅读下载全文

作  者:韩彪[1] 吴众欣[2] 栾钟治[1] 王永剑[1] 

机构地区:[1]北京航空航天大学中德联合软件研究所,北京100191 [2]西安交通大学电子与信息工程学院,西安710049

出  处:《西安交通大学学报》2010年第2期39-43,共5页Journal of Xi'an Jiaotong University

基  金:国家高技术研究发展计划重大专项资助项目(2006AA01A118;2006AA01A124);国家高技术研究发展计划资助项目(2009AA01Z144);科技部国际合作重点资助项目(2006DFA11080);欧盟FP6项目BRIDGE资助项目(045609)

摘  要:为了满足大规模网络计算系统在高并发、动态资源管理、稳定性等方面的需求,提出了一种适于主-从模式网络计算的事件驱动架构.它综合了多线程任务处理和事件驱动任务处理的优点,基于排队论推导出了针对主-从模式网络计算的线程资源管理方法,通过引入网络队列将分阶段事件驱动架构的应用范围由单机环境扩展到广域网环境,利用延时队列改善了系统的响应性和可靠性,优先级队列的使用有效地支持了各种作业调度机制.此外,系统还具备了模块化构建和快速开发的特征.实验和药物发现网格应用的实践表明,应用该架构可使系统1 000个作业的平均提交时间由1 850 s缩短为1 350 s,作业的平均处理时间由1 910 s缩短为1 420 s,系统资源得到了更合理的利用.An event-driven architecture for master-worker network computing is proposed to meet the needs in large-scale network computing systems such as high-concurrency, dynamic resource control and stability. The architecture combines the advantages of multi-threaded mode and event-driven mode, and a new strategy of thread management that is suited for master-worker network computing is derived based on queuing theory. The introduction of network queue extends the application domain of staged event-driven architecture from single host to wide area network environment, and the use of delay queue improves system response and reliability. The priority queue is designed for effectively supporting a variety of job scheduling mechanisms. Moreover, systems have the characteristics of modular construction and rapid development. Experiment results and the application of drug discovery grid with systems based on the proposed architecture show that the average job submission time is reduced from 1 850 s to 1 350 s and the average job processing time is reduced from 1 910 s to 1 420 s for 1 000 jobs, and that system resources have more rational use.

关 键 词:主-从模式 分阶段事件驱动架构 动态资源管理 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象