SSD模型及其在汉语词性标注中的应用  被引量:4

Symbol-and-Statistics Decoding Model and Its Application in Chinese POS Tagging

在线阅读下载全文

作  者:邢富坤[1,2] 宋柔[1] 罗智勇[1] 

机构地区:[1]北京语言大学语言信息处理研究所,北京100083 [2]解放军外国语学院,河南洛阳471003

出  处:《中文信息学报》2010年第1期20-24,共5页Journal of Chinese Information Processing

基  金:国家自然科学基金资助项目(60572159;60872121)

摘  要:该文提出了一种以符号解码与数值解码并举的SSD(Symbol-and-Statistics Decoding Model)模型,该模型被用于汉语词性标注任务,其标注正确率在封闭测试中达到97.08%,开放测试中达到95.67%,较二阶HMM的95.56%和94.70%都有较为显著提高。SSD模型的正确率虽然不及最大熵模型和CRF模型,但它的训练时间远少于后者,说明SSD模型在处理自然语言中的特定任务时是一种较强的实用模型。A statistical language model named Symbol-and-Statistics Decoding (SSD) language model is presented in this article. The 2-gram SSD model is applied to the Chinese POS tagging task with a quite good result. The precision is as high as 97. 08% in the closed test and 95.67% in the open test is, which are both significantly higher than the HMM at 95.56% and 94.70%, respectively. Although the performance of SSD model is not as good as the conditional models such as Maximum Entropy Model and CRF model, the training time of SSD is much less than the conditional models, which makes SSD model more applicable to certain tasks in natural language processing.

关 键 词:计算机应用 中文信息处理 SSD模型 HMM 词性标注 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象