立方体的线图的限制性连通度(英文)  被引量:1

Restricted Connectivity of the Line Graph of Hypercube

在线阅读下载全文

作  者:林辉球[1] 孟吉翔[1] 田应智[1] 

机构地区:[1]新疆大学数学与系统科学学院,新疆乌鲁木齐830046

出  处:《新疆大学学报(自然科学版)》2010年第1期23-26,共4页Journal of Xinjiang University(Natural Science Edition)

基  金:The research is supported by NSFC(No.10671165)

摘  要:子集SE(G)称为是图G的4-限制性边割,如果G-S不连通且每个连通分支至少有4个点.图G中基数最小的4-限制性边割称为4-限制性边连通度,记为λ4(G).本文确定了λ4(Qn)=4n-8.类似的,子集FV(G)称为图G的Rg-限制性点割,如果G-F不连通且每个连通分支的最小度不小于g.基数最小的Rg-限制性点割称为图G的Rg-限制性点连通度,记为κg(G).本文确定了κ1(L(Qn))=3n-4,κ2(L(Qn))=4n-8,其中L(Qn)是立方体的线图.A subset S belong to E(G) is called a 4-restricted-edge-cut of G, if G - S is disconnected and every component contains at least 4 vertices. The minimum cardinality over all 4-restricted-edge-cut of G is called the 4-restricted-edge connectivity of G, denoted by λ4(G). In this paper, we prove that λ4(Qn) = 4n - 8. Similarly, a subset F belong to V(G) is called a R^g-vertex cut of G, if G- F is disconnected and each vertex u ∈ V(G)- F has at least g neighbors in G- F. The minimum cardinality of all R^g-vertex-cut is called the R^g-vertex connectivity of G, denoted by k^g(G). In this paper, we prove that k^1(L(Qn)) = 3n- 4, k^2(L(Qn))=4n-8, where L(Qn) is the line graph of Qn.

关 键 词:线图 立方体 限制性点连通度 限制性边连通度 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象