机构地区:[1]Shanghai Institute of Applied Physics,Chinese Academy of Sciences [2]Department of Physics,University of Trieste [3]INFN,Sezione di Trieste
出 处:《Tsinghua Science and Technology》2010年第1期102-107,共6页清华大学学报(自然科学版(英文版)
基 金:Supported by the Major Research Plan of the National Natural Science Foundation of China (No.2010CB834301);the National Natural Science Foundation of China (Nos.10805071 and 10705020);the Chinese Academy of Sciences Key Project of International Co-operation (No.GJHZ09058);the Shanghai Key Project of Basic Research (No.08JC1411900);supported by ICTP TRIL Programme
摘 要:In line X-ray phase contrast micro-computed tomography (IL-XPCT), which can be implemented at third generation synchrotron radiation sources or by using a micro-focus X-ray tube, is a powerful technique for non-destructive, high-resolution investigations of a broad variety of materials. At the Shanghai Synchrotron Radiation Facility (SSRF), the X-ray Imaging and Biomedical Applications Beamline was built and started regular user operation in May 2009. Both qualitative (without phase retrieval) and quantitative (with phase retrieval) three-dimensional IL-XPCT experimental techniques have been established at the beamline IL-XPCT experiments of a test sample (plastic pipes) used to evaluate the technique, and of a biological sample (locust) at the beamline are reported. Two series of images, qualitative and quantitative, including tomographic slices and three-dimensional rendering images were obtained. In qualitative images, there is a strong edge-enhancement which leads to very clear sample contours, while in quantitative images, the edge-enhancement fades but quantitative measurement of sample's phase information could be achieved. The experiments demonstrate that the combination of qualitative and quantitative images is useful for biological sample studies.In line X-ray phase contrast micro-computed tomography (IL-XPCT), which can be implemented at third generation synchrotron radiation sources or by using a micro-focus X-ray tube, is a powerful technique for non-destructive, high-resolution investigations of a broad variety of materials. At the Shanghai Synchrotron Radiation Facility (SSRF), the X-ray Imaging and Biomedical Applications Beamline was built and started regular user operation in May 2009. Both qualitative (without phase retrieval) and quantitative (with phase retrieval) three-dimensional IL-XPCT experimental techniques have been established at the beamline IL-XPCT experiments of a test sample (plastic pipes) used to evaluate the technique, and of a biological sample (locust) at the beamline are reported. Two series of images, qualitative and quantitative, including tomographic slices and three-dimensional rendering images were obtained. In qualitative images, there is a strong edge-enhancement which leads to very clear sample contours, while in quantitative images, the edge-enhancement fades but quantitative measurement of sample's phase information could be achieved. The experiments demonstrate that the combination of qualitative and quantitative images is useful for biological sample studies.
关 键 词:X-RAY phase contrast tomography phase retrieval synchrotron radiation
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...