检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晓松[1,2] 高志海[1] 李增元[1] 白黎娜[1] 王琫瑜[1]
机构地区:[1]中国林业科学研究院资源信息研究所,北京100091 [2]中国科学院遥感应用研究所,北京100101
出 处:《应用生态学报》2010年第1期152-158,共7页Chinese Journal of Applied Ecology
基 金:国家科技支撑计划项目(2006BAD26B0103);国家高技术研究发展计划项目(2006AA12Z108)资助
摘 要:以Hyperion高光谱影像为数据源,选取流沙、假戈壁(影像端元)及荒漠植被(实测光谱端元)3种端元,利用非受限及全受限的混合像元分解对甘肃省民勤绿洲-荒漠过渡带的稀疏植被覆盖度进行了估测.结果表明:全受限混合像元分解得到的荒漠植被分量准确地代表了地表真实稀疏植被覆盖情况,两者之间的偏差不超过5%、均方根误差RMSE为3.0681;而非受限的混合像元分解结果则明显小于地面实测植被覆盖度,两者之间虽具有一定相关性,但相关性不高(R2=0.5855);与McGwire等的相关研究相比,全受限混合像元分解对稀疏植被覆盖度的估测具有更高的精度及可靠性,具有广阔的应用前景.Based on Hyperion hyperspectral image data,the image-derived shifting sand,false-Gobi spectra,and field-measured sparse vegetation spectra were taken as endmembers,and the sparse vegetation coverage (〈40%) in Minqin oasis-desert transitional zone of Gansu Province was estimated by using fully constrained linear spectral mixture model (LSMM) and non-constrained LSMM,respectively.The results showed that the sparse vegetation fraction based on fully constrained LSMM described the actual sparse vegetation distribution.The differences between sparse vegetation fraction and field-measured vegetation coverage were less than 5% for all samples,and the RMSE was 3.0681.However,the sparse vegetation fraction based on non-constrained LSMM was lower than the field-measured vegetation coverage obviously,and the correlation between them was poor,with a low R2 of 0.5855.Compared with McGwire's corresponding research,the sparse vegetation coverage estimation in this study was more accurate and reliable,having expansive prospect for application in the future.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249