检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学系统工程研究所,大连116024 [2]大连理工大学软件学院,大连116620
出 处:《情报学报》2010年第1期45-52,共8页Journal of the China Society for Scientific and Technical Information
摘 要:本体作为语义基础被广泛应用于信息检索、人工智能、语义网络和知识管理等领域。然而本体的构建和维护工作费时费力,影响了本体的广泛应用。因此,研究者们尝试利用机器学习、数据挖掘等技术自动构建本体,提出诸多本体自动构建的理论和方法。本文在总结现存本体自动构建方法的同时深入研究了基于FCA(Formal Concept Analysis)的本体自动构建方法,主要包括:基于PAT-Tree的统计分词,文档特征选择,基于文档一关键词的形式背景生成,最后用FCA构建本体。实验表明,基于FCA的本体构建方法明显提高了本体自动化的程度,卡句建的本体具有较好的可信度。As a semantic foundation of concepts in a domain, ontology has been widely applied to information retrieval, artificial intelligence, knowledge network, knowledge management etc. However, ontology construction is a time-consuming and tedious task, so automatic or semi-automatic methods have been proposed by some researchers. In this paper, the current research states and progresses of automatic ontology construction technologies are summarized and some FCA based methods are deeply analyzed in three steps: PAT-Tree based phrase extraction ; feature selection; formal context acquirement and FCA based ontology construction. Some experiments results show that FCA based method can greatly improve automatic construction of ontology and the constructed ontology by this model is readable and reliable.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.215.228