Robust Object Tracking under Appearance Change Conditions  被引量:1

Robust Object Tracking under Appearance Change Conditions

在线阅读下载全文

作  者:Qi-Cong Wang Yuan-Hao Gong Chen-Hui Yang Cui-Hua Li Department of Computer Science, Xiamen University, Xiamen 361005, PRC 

出  处:《International Journal of Automation and computing》2010年第1期31-38,共8页国际自动化与计算杂志(英文版)

基  金:supported by National Natural Science Foundation of China (No.40627001);the 985 Innovation Project on Information Technique of Xiamen University (2004–2008)

摘  要:We propose a robust visual tracking framework based on particle filter to deal with the object appearance changes due to varying illumination, pose variantions, and occlusions. We mainly improve the observation model and re-sampling process in a particle filter. We use on-line updating appearance model, affine transformation, and M-estimation to construct an adaptive observation model. On-line updating appearance model can adapt to the changes of illumination partially. Affine transformation-based similarity measurement is introduced to tackle pose variantions, and M-estimation is used to handle the occluded object in computing observation likelihood. To take advantage of the most recent observation and produce a suboptimal Gaussian proposal distribution, we incorporate Kalman filter into a particle filter to enhance the performance of the resampling process. To estimate the posterior probability density properly with lower computational complexity, we only employ a single Kalman filter to propagate Gaussian distribution. Experimental results have demonstrated the effectiveness and robustness of the proposed algorithm by tracking visual objects in the recorded video sequences.We propose a robust visual tracking framework based on particle filter to deal with the object appearance changes due to varying illumination, pose variantions, and occlusions. We mainly improve the observation model and re-sampling process in a particle filter. We use on-line updating appearance model, affine transformation, and M-estimation to construct an adaptive observation model. On-line updating appearance model can adapt to the changes of illumination partially. Affine transformation-based similarity measurement is introduced to tackle pose variantions, and M-estimation is used to handle the occluded object in computing observation likelihood. To take advantage of the most recent observation and produce a suboptimal Gaussian proposal distribution, we incorporate Kalman filter into a particle filter to enhance the performance of the resampling process. To estimate the posterior probability density properly with lower computational complexity, we only employ a single Kalman filter to propagate Gaussian distribution. Experimental results have demonstrated the effectiveness and robustness of the proposed algorithm by tracking visual objects in the recorded video sequences.

关 键 词:Visual tracking particle filter observation model Kalman filter expectation-maximization (EM) algorithm 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象