拉伸载荷下U形缺口薄板试件应力集中系数修正公式  被引量:1

Stress Concentration Factor of U-shaped Notch Sheet under Tensile Load

在线阅读下载全文

作  者:张忠平[1] 张东伟[1] 傅振堂[1] 杨尊袍[1] 孙强[1] 

机构地区:[1]空军工程大学理学院,陕西西安710051

出  处:《空军工程大学学报(自然科学版)》2010年第1期74-77,共4页Journal of Air Force Engineering University(Natural Science Edition)

摘  要:利用平面单元与三维实体单元的有限元方法分别计算了拉伸载荷下对称U形缺口薄板试件的应力集中系数,得到了平面单元计算结果总是小于三维单元计算结果的结论,在此基础上,比较了三维有限元结果与Neuber公式、Barrata-Neal公式的计算结果。发现:对于所研究的6种缺口形状,相较于三维有限元计算结果,Neuber公式和Barrata-Neal公式都低估了缺口应力集中系数,其中,Neuber公式低估的程度界于8.5%-13.3%之间,Barrata-Neal公式低估的最大偏差为5.8%。基于这些事实,利用三维有限元计算结果修正了Neuber公式和Barrata-Neal公式的估算结果,得到了拉伸载荷下U形缺口薄板试件的应力集中系数修正公式。Using plane element and three -dimensional element of finite element method to calculate stress concentration factor (SCF) of symmetrical U - shaped notch sheet under tensile load respectively, a conclusion is obtained that the computing results of the plane element are always lower than those of the three - dimensional element. On the basis of this, a comparison is done between the results of three - dimensional element and the computing results from Neuber's formula and from Barrata - Neal's formula. It is found that, compared with the FEM results of the 6 kinds of notched sheet, the deviation of the results obtained using Neuber's formula ranges from 8.5% to 13.3%, and the maximum deviation of SCF got by Barrata -Nealg formula is 5.5%. In view of these facts, the results from Neuberg formula and from Barrata- Nealg formula are modified using FEM results,what is more, the modified formulae for estimating SCF of U - shaped notch sheet under tensile load are obtained.

关 键 词:U形缺口薄板试件 应力集中系数 Neuber公式 Barrata—Neal公式 有限元 

分 类 号:O343.4[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象