检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪珊珊[1,2]
机构地区:[1]兰州大学核科学与技术学院,甘肃兰州710000 [2]武警成都指挥学院,四川成都610213
出 处:《绵阳师范学院学报》2010年第2期35-38,共4页Journal of Mianyang Teachers' College
摘 要:自普里戈金从玻尔兹曼方程出发证明热力学第二定律之熵增加原理,克劳修斯熵表述和玻尔兹曼熵表述在平衡态统计和非平衡态统计里都具有等价性。熵作为热力学的最基本概念被广泛应用于各个领域,比如宇宙理论、信息理论、生命科学、控制理论、概率论等。该文尝试以最简单的单原子分子理想气体系统为基础,以玻尔兹曼分布为出发点,从正反两个方向严格推证平衡态下克劳修斯熵表述与玻尔兹曼熵表述的等价性,基于此进一步说明平衡态下H函数与熵的一致性。Thermodynamic entropy was defined in both statistical thermodynamics and classical thermodynamics viewpoints, and proved equivalent between the two definitions after Ilya Prigogine built up the theory in non - equilibrium thermodynamic systems. As a fundamental thermodynamics relation, the concept of entropy has been used not only in Physics and Chemistry, but also in Cosmology, Information Theory, Life, Statistical Mechanics, etc. In this paper, the relationship between two kinds of entropy definitions from Rudolf Clansius and Ludwig Boltzmann has been discussed on the basis of an equilibrium system of ideal monatomic gases. Mean-while, the correlation between the H -function and entropy in the equilibrium thermodynamic system is discussed.
分 类 号:O562[理学—原子与分子物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15