检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学工商管理学院,阜新123000 [2]辽宁工程技术大学继续教育学院,阜新123000
出 处:《系统工程理论与实践》2010年第2期272-276,共5页Systems Engineering-Theory & Practice
基 金:辽宁省社会科学界联合会项目(20081slktglx-20)
摘 要:在博弈论中,要求模糊数的序不仅要有好的分辨能力,还要满足经济人理性的假说.为此,提出了元序概念,并证明该序为全序.利用结构元相关定理,证明了m×n阶模糊矩阵必存在一m×n阶实数矩阵与其对应,且二者有相同的纳什均衡解.进而,利用结构元方法简化了模糊博弈矩阵的求解.最后,通过一个实际例子,表明了该方法的有效性.Not only is it necessary to have a good ability to distinguish something for compared order of fuzzy number in game theory, but also meet the rational hypothesis of economic man. Therefore, in this paper, the concept of element-order is advanced, and we prove that it is the whole order, by using the relevent structured element theorem, we proved that for arbitrary fuzzy dual matrix, there have to be a real dual-matrix corresponding to it and, both have the same Nash equilibrium solution, the solving of original problem is simplified by using method of structured element. Finally, take an example to illustrate effectivity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38