检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统工程理论与实践》2010年第2期332-338,共7页Systems Engineering-Theory & Practice
基 金:湖南省教育厅科学研究项目(07C232)
摘 要:针对属性权重信息不完全确定、属性值为正态分布随机变量且数据信息来自于不同时期的动态随机多属性决策问题,给出了正态分布数的运算法则,定义了正态分布数加权算术平均(NDNWAA)算子和动态正态分布数加权算术平均(DNDNWAA)算子,进而提出了一种信息不完全确定的动态随机多属性决策方法.该方法利用DNDNWAA算子和NDNWAA算子对正态分布属性值进行集成;利用正态分布属性值的方差和属性权重的随机性,通过建立优化模型确定最优属性权重;利用正态分布3σ原则、区间数比较的可能度公式和互补判断矩阵的排序公式对决策方案进行排序和择优.最后,实例分析表明了该方法的可行性和有效性.For dynamic stochastic multiple attribute decision making problems, in which the information on attribute weights is incomplete certain, the attribute values are normal distribution stochastic variables and the argument information are given at different numbers are given, the normal distribution number periods, some operational laws of normal distribution weighted arithmetic averaging (NDNWAA) operator and the dynamic normal distribution number weighted arithmetic averaging (DNDNWAA) operator are proposed, and then an approach for solving dynamic stochastic multiple attribute decision making with incomplete certain information is developed. In this method, normal distribution attribute values are aggregated by the DNDNWAA operator and the NDNWAA operator, some optimal models are constructed to determine the optimal attribute weights by using the variance of normal distribution attribute values and the randomicity of attribute weights, ranking of alternatives is performed by using 3σ principle of normal distribution, possibility degree formula for comparing two interval numbers and formula for priority of complementary judgement matrix. Finally, an example shows the feasibility and effectiveness of this method.
分 类 号:N945.25[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200