检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Institute for Advanced Physics, Department of Physics, Konkuk University [2]Liquid Crystal Research Center, Konkuk University
出 处:《Chinese Physics C》2010年第3期359-362,共4页中国物理C(英文版)
基 金:Supported by Konkuk University KU- Brain Pool Project in 2009
摘 要:The resistivity of conventional glass is quite high and is unacceptable in a high rate environment. Low resistive glass-electrodes could be a solution for this problem. The present study reports the e^+/e^- simulation results of an RPC detector made from low resistive phosphate glass electrodes. The detailed geometrical configuration of the content materials which are the essential components of the glass of the RPC detector have been created with the GEANT4 simulation code. Two different types of particle sources, i.e. for e^+/e^- , have been located on the detectors surface to evaluate the performance of the phosphate glass RPC. Both of the particles have been simulated as a function of their respective energies in the range of 0.1 MeV 1.0 GeV. The present simulation work has shown that the resistive electrode plays an important role for the particle production in the RPC configuration.The resistivity of conventional glass is quite high and is unacceptable in a high rate environment. Low resistive glass-electrodes could be a solution for this problem. The present study reports the e^+/e^- simulation results of an RPC detector made from low resistive phosphate glass electrodes. The detailed geometrical configuration of the content materials which are the essential components of the glass of the RPC detector have been created with the GEANT4 simulation code. Two different types of particle sources, i.e. for e^+/e^- , have been located on the detectors surface to evaluate the performance of the phosphate glass RPC. Both of the particles have been simulated as a function of their respective energies in the range of 0.1 MeV 1.0 GeV. The present simulation work has shown that the resistive electrode plays an important role for the particle production in the RPC configuration.
关 键 词:Monte Carlo simulation resistive plate chamber GEANT4 simulation
分 类 号:O572.212[理学—粒子物理与原子核物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117