多元线性混合模型方差分量矩阵的非负估计  被引量:1

Nonnegative Estimation of Variance Component Matrix in Multivariate Linear Mixed Model

在线阅读下载全文

作  者:马铁丰[1] 叶仁道[2] 贾丽杰[3] 

机构地区:[1]西南财经大学统计学院,成都611130 [2]杭州电子科技大学财经学院,杭州310018 [3]天津大学管理学院,天津300072

出  处:《数学学报(中文版)》2010年第2期349-362,共14页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学青年基金(10801005);国家自然科学基金数学天元青年基金(10926059);西南财经大学211工程三期统计学重点学科建设资助项目

摘  要:本文研究了带有两个方差分量矩阵的多元线性混合模型方差分量矩阵的估计问题.对于平衡模型,给出了基于谱分解估计的一个方差分量矩阵的非负估计类.对于非平衡模型,给出了方差分量矩阵的广义谱分解估计类,讨论了与ANOVA估计等价的充要条件.同时,在广义谱分解估计的基础上给出了一种非负估计类,并讨论了其优良性.当具有较小二次风险的非负估计不存在时,从估计为非负的概率的角度考虑,将Kelly和Mathew(1993)提出的构造具有更小取负值概率的估计类的方法推广到本文的多元模型下,给出了较谱分解估计相比有更小取负值概率和更小风险的估计类.最后,模拟研究和实例分析表明文中理论结果有很好的表现.Multivariate linear mixed model with two variance components matrices is considered. For balanced model, based on spectral decomposition estimate (SDE), a class of nonnegative estimate of variance components matrices is proposed. For unbalanced model, a so-called generalized spectral decomposition estimate (GSDE) of variance components matrices is obtained. Our results show a sufficient and necessary condition for the GSDE to be equal to the analysis of variance estimate (ANOVAE). And then, based on GSDE, we also propose a class of nonnegative estimate and discuss the optimality. Furthermore, we extend the method proposed by Kelly and Mathew (1993) to multivariate model in this paper. Finally, some simulations and applications to illustrate the results are presented.

关 键 词:多元线性混合模型 方差分量矩阵 谱分解估计 中部塌陷 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象