RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF FINITE ELEMENT METHODS FOR OPTIMAL CONTROL PROBLEMS  被引量:2

RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF FINITE ELEMENT METHODS FOR OPTIMAL CONTROL PROBLEMS

在线阅读下载全文

作  者:Tang Liu Ningning Yan Shuhua Zhang 

机构地区:[1]Research Center for Mathematics and Economics Tianjin University of Finance and Economics, Tianjin 300222, China [2]Institute of System Sciences, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China

出  处:《Journal of Computational Mathematics》2010年第1期55-71,共17页计算数学(英文)

基  金:supported in part by the National Basic Research Program (2007CB814906);the National Natural Science Foundation of China (10471103 and 10771158);Social Science Foundation of the Ministry of Education of China (06JA630047);Tianjin Natural Science Foundation (07JCYBJC14300);Tianjin University of Finance and Economics;supported by the National Basic Research Program under the Grant 2005CB321701;the National Natural Science Foundation of China under the Grant 10771211

摘  要:Asymptotic error expansions in H^1-norm for the bilinear finite element approximation to a class of optimal control problems are derived for rectangular meshes. With the rectan- gular meshes, the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied. The higher order numerical approximations are used to generate a posteriori error estimators for the finite element approximation.Asymptotic error expansions in H^1-norm for the bilinear finite element approximation to a class of optimal control problems are derived for rectangular meshes. With the rectan- gular meshes, the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied. The higher order numerical approximations are used to generate a posteriori error estimators for the finite element approximation.

关 键 词:Optimal control problem Finite element methods Asymptotic error expansions Defect correction A posteriori error estimates. 

分 类 号:O232[理学—运筹学与控制论] S965.325[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象