基于30m^3聚合釜的纳米CaCO_3原位聚合PVC树脂颗粒特性预测与优化  被引量:1

Prediction and optimization of the particle characteristics of PVC manufactured by in-situ polymerization of nano-CaCO_3 in 30 m^3 polymerizers

在线阅读下载全文

作  者:夏陆岳[1] 韩金铭[2] 韩和良[3] 蔡亦军[1] 潘海天[1] 

机构地区:[1]浙江工业大学化学工程与材料学院,浙江杭州310032 [2]浙江巨化股份有限公司电化厂,浙江衢州324004 [3]杭州华纳化工有限公司,浙江杭州310006

出  处:《聚氯乙烯》2010年第1期23-25,共3页Polyvinyl Chloride

摘  要:通过微乳化分散技术使CaCO3实现良好分散,通过氯乙烯原位悬浮聚合制得了纳米CaCO3微乳化法原位聚合PVC树脂(简称纳米PVC树脂)。为解决纳米PVC树脂的颗粒形态控制难题,提出了基于组合神经网络的软测量方法,建立了纳米PVC树脂颗粒特性的软测量预测模型,应用效果表明该软测量模型能较准确地预测纳米PVC树脂的平均粒径。利用该软测量预测模型在30 m3聚合釜上实现了纳米PVC树脂颗粒特性优化,制得具有较理想颗粒特性的纳米PVC树脂。Nano-CaCO3 in-situ polymerization PVC resin ( nano-PVC resin) was manufactured by in-situ polymerization of vinyl chloride with nano-CaCO3 which was well dispersed by microemulsion dispersion techniques. To resolve the difficult problems of controlling the particle morphology of nano-PVC resin, a soft-measuring method based on combined neural networks was provided, and thus a soft-measuring prediction model for nano-PVC particle characteristics was developed. The application results showed that the soft-measuring model could accurately predict the mean particle size of nano-PVC resin. Optimization of particle characteristics of nano-PVC resin was successfully implemented based on the soft-measuring model in 30 m^3 polymerizers, and thus nano-PVC resin with desirable particle characteristics was prepared.

关 键 词:PVC树脂 纳米碳酸钙 颗粒特性 组合神经网络 预测 优化 

分 类 号:TQ325.3[化学工程—合成树脂塑料工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象