检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIU Jing WU Feng-zhi YANG Yang
机构地区:[1]Horticulture College, Northeast Agricultural University, Harbin 150030, P.R.China
出 处:《Agricultural Sciences in China》2010年第2期266-274,共9页中国农业科学(英文版)
基 金:funded by the National 973 Program of China(2009CB119004-05);the National Natural Science Foundation of China(30771252);the Education Department Project of Heilongjiang Province,China(11531018)
摘 要:To investigate the effects of a plant autotoxin, cinnamic acid, on bacterial communities in the rhizosphere soil of cucumber seedlings under salt stress, we used cucumber as the experimental material, cinnamic acid as the autotoxin, and NaCl to apply salt stress. Bacterial communities in the rhizosphere soil were analyzed using polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and clone sequencing. Salt stress decreased the diversity of bacterial species in rhizosphere soil of cucumber seedlings at several growth stages. Cinnamic acid exacerbated the effects of salt stress at high concentrations, but alleviated its effects at low concentrations. Cloning and sequencing results indicated that DGGE bands amplified from soil samples showed high homology to uncultured bacterial species. Cinnamic acid at 50 mg kg^-1 soil improved cucumber growth and was the most effective treatment to alleviate the effects of salt stress on bacterial communities.To investigate the effects of a plant autotoxin, cinnamic acid, on bacterial communities in the rhizosphere soil of cucumber seedlings under salt stress, we used cucumber as the experimental material, cinnamic acid as the autotoxin, and NaCl to apply salt stress. Bacterial communities in the rhizosphere soil were analyzed using polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and clone sequencing. Salt stress decreased the diversity of bacterial species in rhizosphere soil of cucumber seedlings at several growth stages. Cinnamic acid exacerbated the effects of salt stress at high concentrations, but alleviated its effects at low concentrations. Cloning and sequencing results indicated that DGGE bands amplified from soil samples showed high homology to uncultured bacterial species. Cinnamic acid at 50 mg kg^-1 soil improved cucumber growth and was the most effective treatment to alleviate the effects of salt stress on bacterial communities.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117