Isolation and Characterization of Transcriptionally Active Ty1-copia Retrotransposons in Fragaria × ananassa  被引量:6

Isolation and Characterization of Transcriptionally Active Ty1-copia Retrotransposons in Fragaria × ananassa

在线阅读下载全文

作  者:MA Yue HE Ping SUN Hai-yue ZHAO Gui-ling DAI Hong-yan ZHANG Zhi-hong 

机构地区:[1]College of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R.China [2]College of Forestry, Shenyang Agricultural University, Shenyang 110866, P.R.China

出  处:《Agricultural Sciences in China》2010年第3期337-345,共9页中国农业科学(英文版)

基  金:supported by the National Natural Sci-ence Foundation of China (30871689);the Program for New Century Excellent Talents in University, China(NCET-07-0565);Science Foundation from the Department of Education of Liaoning Province, China(20060772)

摘  要:One possible mechanism suggested for somaclonal variation is the activation of transposable elements. The activation of retrotransposons by stresses and external changes is commonly observed in plants. In previous study, we isolated the reverse transcriptase (RT) gene sequences of Ty 1-copia retrotransposons from tissue culture strawberry (Fragaria x ananassa) plant, but not the transcriptionally active sequence. For further understanding the relationship between retrotransposon and somaclonal varation, in this study, we isolated the transcriptionally active RT gene sequences from strawberry plants subjected to different abiotic stresses. These retrotransposons were activated by spraying strawberry leaves with 2 mmol L^-1 salicylic acid (SA), 50 mmol L^-1 methyl jasmonate (MeJA), 50 mmol L^-1 abscisic acid (ABA), 50 mmol L^-1 2,4- dichlorophenoxyacetic acid (2,4-D) or by inducing callus growth in 2 types of MS media: first medium supplemented with 0.5 mg L^-1 6-benzylaminopurine (6-BA), 0.5 mg L^-1 gibberellic acid (GA3), 1.0 mg L^-1 thidiazuron (TDZ), and 0.1 mg L^-1 2,4-D, and the second medium supplemented with 0.5 mg L^-1 6-BA, 0.5 mg L^-1 GA3, 2.0 mg L^-1 TDZ, and 0.02 mg L^-1 indole butyric acid (1BA). Analysis of gene sequences of 17 RTs revealed that none of them contained stop codons and/or indels disrupting the reading frame. These different stress-origin transcriptionally active RTs were remarkably similar to each other- FATEXP2-8 and FATEYS9-7 showed 100% sequence identity. Analysis of pylogenetic of these transcriptionally active RTs and the RT sequences from genome showed that there were close phylogenetic relationships of most of the transcriptionally active RTs. The results of this study have contributed to the background information necessary for future studies for evaluating the relationship between retrotransposons and somaclonal variation.One possible mechanism suggested for somaclonal variation is the activation of transposable elements. The activation of retrotransposons by stresses and external changes is commonly observed in plants. In previous study, we isolated the reverse transcriptase (RT) gene sequences of Ty 1-copia retrotransposons from tissue culture strawberry (Fragaria x ananassa) plant, but not the transcriptionally active sequence. For further understanding the relationship between retrotransposon and somaclonal varation, in this study, we isolated the transcriptionally active RT gene sequences from strawberry plants subjected to different abiotic stresses. These retrotransposons were activated by spraying strawberry leaves with 2 mmol L^-1 salicylic acid (SA), 50 mmol L^-1 methyl jasmonate (MeJA), 50 mmol L^-1 abscisic acid (ABA), 50 mmol L^-1 2,4- dichlorophenoxyacetic acid (2,4-D) or by inducing callus growth in 2 types of MS media: first medium supplemented with 0.5 mg L^-1 6-benzylaminopurine (6-BA), 0.5 mg L^-1 gibberellic acid (GA3), 1.0 mg L^-1 thidiazuron (TDZ), and 0.1 mg L^-1 2,4-D, and the second medium supplemented with 0.5 mg L^-1 6-BA, 0.5 mg L^-1 GA3, 2.0 mg L^-1 TDZ, and 0.02 mg L^-1 indole butyric acid (1BA). Analysis of gene sequences of 17 RTs revealed that none of them contained stop codons and/or indels disrupting the reading frame. These different stress-origin transcriptionally active RTs were remarkably similar to each other- FATEXP2-8 and FATEYS9-7 showed 100% sequence identity. Analysis of pylogenetic of these transcriptionally active RTs and the RT sequences from genome showed that there were close phylogenetic relationships of most of the transcriptionally active RTs. The results of this study have contributed to the background information necessary for future studies for evaluating the relationship between retrotransposons and somaclonal variation.

关 键 词:transcription activated callus culture Ty1-copia retrotransposons STRAWBERRY stress 

分 类 号:Q943[生物学—植物学] Q26

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象