检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Informatics,Kyoto University
出 处:《Journal of Systems Science & Complexity》2010年第1期91-101,共11页系统科学与复杂性学报(英文版)
摘 要:This paper presents an algorithm that tests whether a given degree-bounded digraph is k-edge-connected or E-far from k-edge-connectivity. This is the first testing algorithm for k-edge- connectivity of digraphs whose running time is independent of the number of vertices and edges. A digraph of n vertices with degree bound d is ε-far from k-edge-connectivity if at least εdn edges have to be added or deleted to make the digraph k-edge-connected, preserving the degree bound. Given a constant error parameter ε and a degree bound d, our algorithm always accepts all k-edge-connected digraphs and reiects all digraphs that is ε-far from k-edge-connectivity with orobabilitv at least 2/3.It runs in O(d(εd^-c)^k logεd^-1O)(c〉1 is a constant)time when input digraphs are restricted to be (k-1)-edge connected and runs in O(d(εd^-ck)^klogεd^-kO)(c〉1 is a constant)time for general digraphs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179