检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学自动化系国家CIMS工程技术研究中心,北京100084
出 处:《电子与信息学报》2010年第2期405-410,共6页Journal of Electronics & Information Technology
基 金:国家863计划项目(2007AA04Z150);国家自然科学基金(60674080;60704027)资助课题
摘 要:该文针对基于概念格的大规模数据和规则挖掘中,概念节点数呈指数爆炸的问题,提出了概念覆盖度函数和概念格度量模型,进行概念格约简,从而使生成的标示概念格具有线性空间复杂度。给出了概念格约简的直求法、同步法和提取法3种算法。时空复杂度分析和仿真试验表明,所提方法可以大幅约简概念格规模,从而显著提高建格和规则挖掘效率。标示概念还具有特殊含义,在Web服务关系挖掘中有很好的应用。To address the lattice size exponential explosion problem in large scale data and rule mining, concept coverage density function and measurement model are introduced to reduce redundant concepts. The pruned lattice, named marked-concept lattice, has linear space complexity and can be obtained through direct or synchronous construction or node-extraction. Analysis and simulation tests show that this reduction model not only significantly reduces normal concept lattice size, but also significantly improves lattice building and rule mining efficiency. Furthermore, marked concept carries crucial information and physical meanings, thus can make benefits for Web service relationship mining.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249