检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微电子学与计算机》2010年第3期51-53,58,共4页Microelectronics & Computer
基 金:国家自然科学基金项目(70571087)
摘 要:KNN是一种简单、有效、非参数的分类算法.针对样本分布偏斜的分类环境,首先提出了一种改进的特征选择方法进行特征降维,在此基础上进一步提出了一种基于分布的改进KNN方法用于文本分类,降低了分布偏斜问题对决策函数的影响.试验表明,所提出的改进KNN文本分类方法具有较好的分类性能.KNN is a simple, valid and non-parameter method often applied in categorization. Under the condition that the samples distribution is uneven, we first put forward an improved weighting way in feature reduction; then we improve the KNN basing on density in automatic text categorization. This way reduces the impact from the uneven distribution, we have a test about text categorization. The result shows that these methods have a better precision than the common KNN.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200