电去离子集成过程分级浓缩与纯化电镀镍漂洗废水  被引量:5

Successive concentration and purification of nickel-electroplating rinsing wastewater by integrating membrane process with electrodeionization

在线阅读下载全文

作  者:王玉珍[1] 王建友[1] 卢会霞[1] 王少明[1] 董恒[1] 

机构地区:[1]南开大学环境科学与工程学院,天津300071

出  处:《化工学报》2010年第3期754-760,共7页CIESC Journal

基  金:国家高技术研究发展计划项目(2007AA06Z330);天津市科技支撑计划重点项目(08ZCKFSH01800)~~

摘  要:Successive concentration and purification of simulated nickel-electroplating rinsing wastewater was carried out by integrating membrane process with electrodeionization.The concentrate compartments were filled with ion exchange resins to enhance the separation.The concentrate stream of the primary EDI procedure was operated in closed circuit circulation.The influence of the volumetric ratio of resins in concentrate compartments on the separation was examined.It was found that the best performance could be achieved when anion to cation resin ratio of 6∶4 was adopted.With feed Ni2+ concentration of 50 mg·L-1 and pH of 4.25,the Ni2+ concentration of effluent dilute stream could reach 2.78 mg·L-1 while that of the effluent concentrate stream was as high as 11171 mg·L-1,which gave a concentration ratio of higher than 220.The effluent dilute stream of the primary EDI was then sent to the second EDI stack for deep desalting.Dilute product with resistivity of 1.6—2.0 MΩ·cm was then obtained,which could be recovered as pure water for electroplating.The membrane process integrated with EDI could find its potent role for zero emission and resource reuse of heavy metal wastewater.Successive concentration and purification of simulated nickel-electroplating rinsing wastewater was carried out by integrating membrane process with electrodeionization.The concentrate compartments were filled with ion exchange resins to enhance the separation.The concentrate stream of the primary EDI procedure was operated in closed circuit circulation.The influence of the volumetric ratio of resins in concentrate compartments on the separation was examined.It was found that the best performance could be achieved when anion to cation resin ratio of 6∶4 was adopted.With feed Ni2+ concentration of 50 mg·L-1 and pH of 4.25,the Ni2+ concentration of effluent dilute stream could reach 2.78 mg·L-1 while that of the effluent concentrate stream was as high as 11171 mg·L-1,which gave a concentration ratio of higher than 220.The effluent dilute stream of the primary EDI was then sent to the second EDI stack for deep desalting.Dilute product with resistivity of 1.6—2.0 MΩ·cm was then obtained,which could be recovered as pure water for electroplating.The membrane process integrated with EDI could find its potent role for zero emission and resource reuse of heavy metal wastewater.

关 键 词:电去离子 电镀废水 镍离子 

分 类 号:TQ028.8[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象